Analyzing Exponential Functions

These notes are intended as a summary of section 5.2 (p. $344-348$) in your workbook. You should also read the section for more complete explanations and additional examples.

Exponential Functions

An exponential function is any function of the form

$$
f(x)=a^{x} \quad\left\{\begin{array}{l}
a \neq 1 \\
a>0
\end{array}\right.
$$

where a is the base and x is the exponent.

Graphing Exponential Functions

In the Math Lab, we observed the graphs of various exponential functions. In general, the graphs had one of two appearances.

1. The graph of $f(x)=a^{x}$ when $a>1$.

2. The graph of $f(x)=a^{x}$ when $0<a<1$.

Note the following properties of the graph of $f(x)=a^{x}$:

1. When $a>1, y$ increases as x increases. The function is said to be increasing.
2. When $0<a<1, y$ decreases as x increases. The function is said to be decreasing.
3. The y-intercept of the graph is always 1 .
4. The point $(1, a)$ is always on the graph.
5. The x-axis $(y=0)$ is a horizontal asymptote.
6. The graph has no x-intercepts.
7. The domain of the function is $x \in \mathbb{R}$.
8. The range of the function is $y>0$.

Example 1 (sidebar p. 345)

a) Graph $y=\left(\frac{1}{3}\right)^{x}$.

\boldsymbol{x}	\boldsymbol{y}
-2	
-1	
0	
1	
2	

b) Determine:

i) the effect on y when x increases by 1
ii) whether the function is increasing or decreasing
iii) the intercepts
iv) the equations of any asymptotes
v) the domain of the function
vi) the range of the function

Transforming Exponential Functions

The image graph $y=c a^{b(x-h)}+k$ is the graph of $y=a^{x}$:

- stretched vertically by a factor of $|c|$
- stretched horizontally by a factor of $\frac{1}{|b|}$
- reflected in the x-axis when $c<0$
- reflected in the y-axis when $b<0$
- translated k units vertically
- translated h units horizontally

Note: Remember that transformations must be applied in the correct order (stretches, then reflections, then translations).

Example (not in workbook)

Graph $y=-5\left(3^{2(x+4)}\right)-7$.

Example 2 (sidebar p. 347)

a) Use the graph of $y=2^{x}$ to sketch the graph of $y=3\left(2^{-x+2}\right)$.

b) From the graph of $y=3\left(2^{-x+2}\right)$, determine:
i) whether the function is increasing or decreasing
ii) the intercepts
iii) the equation of the asymptote
iv) the domain of the function
v) the range of the function

Example (not in workbook)

a) Graph $y=e^{x}$.

b) Use the graph of $y=e^{x}$ to sketch the graph of $y=3 e^{x+2}-5$.

Homework: \#3, 5, 7, 10, 13 in the exercises (p. 349 - 355). Answers on p. 356.

