Analyzing Exponential Functions

These notes are intended as a summary of section 5.2 (p. 344 - 348) in your workbook. You should also read the section for more complete explanations and additional examples.

Exponential Functions

An **exponential function** is any function of the form

$$f(x) = a^x \qquad \begin{cases} a \neq 1 \\ a > 0 \end{cases}$$

where *a* is the **base** and *x* is the **exponent**.

Graphing Exponential Functions

In the Math Lab, we observed the graphs of various exponential functions. In general, the graphs had one of two appearances.

1. The graph of $f(x) = a^x$ when a > 1.

2. The graph of $f(x) = a^x$ when 0 < a < 1.

Note the following properties of the graph of $f(x) = a^x$:

- 1. When a > 1, y increases as x increases. The function is said to be **increasing**.
- 2. When 0 < a < 1, y decreases as x increases. The function is said to be **decreasing**.
- 3. The *y*-intercept of the graph is always 1.
- 4. The point (1, a) is always on the graph.
- 5. The x-axis (y=0) is a horizontal asymptote.
- 6. The graph has no *x*-intercepts.
- 7. The domain of the function is $x \in \mathbb{R}$.
- 8. The range of the function is y > 0.

Example 1 (sidebar p. 345)

b) Determine:

- i) the effect on y when x increases by 1
- ii) whether the function is increasing or decreasing
- iii) the intercepts
- iv) the equations of any asymptotes
- v) the domain of the function
- vi) the range of the function

Transforming Exponential Functions

The image graph $y = ca^{b(x-h)} + k$ is the graph of $y = a^x$:

- stretched vertically by a factor of |c|
- stretched horizontally by a factor of $\frac{1}{|b|}$
- reflected in the *x*-axis when c < 0
- reflected in the *y*-axis when b < 0
- translated *k* units vertically
- translated *h* units horizontally

Note: Remember that transformations must be applied in the correct order (stretches, then reflections, then translations).

Example (not in workbook)

Graph $y = -5(3^{2(x+4)}) - 7$.

Example 2 (sidebar p. 347)

a) Use the graph of $y = 2^x$ to sketch the graph of $y = 3(2^{-x+2})$.

-										
-						 				
-										
-				 		 				
-				 		 		 		

- b) From the graph of $y = 3(2^{-x+2})$, determine:
 - i) whether the function is increasing or decreasing
 - ii) the intercepts
 - iii) the equation of the asymptote
 - iv) the domain of the function
 - v) the range of the function

Example (not in workbook)

b) Use the graph of $y = e^x$ to sketch the graph of $y = 3e^{x+2} - 5$.

Homework: #3, 5, 7, 10, 13 in the exercises (p. 349 – 355). Answers on p. 356.